Bessere Qualität durch künstliche Intelligenz
50 Prozent weniger Verlust
Um den Algorithmus zu testen, arbeiteten die Autoren mit Hitachi Energy in Lenzburg zusammen. Hitachi Energy produziert Halbleiter, die in Elektro-Fahrzeugen und Zügen gleichermassen eingesetzt werden, wie in Windkraftanlagen oder der Stromleitungen. Die historischen Produktionsdaten des Halbleiterproduzenten ermöglichten es den Forschenden, zwei Herstellungsschritte zu identifizieren, die die Qualität der Halbleiter am stärksten beeinträchtigten. Mit diesen Erkenntnissen in der Tasche gingen sie in die Fabrik, um ein Experiment unter realen Produktionsbedingungen durchzuführen.
Gemeinsam mit den Ingenieurinnen und Ingenieuren von Hitachi Energy teilten die Autoren eine Produktionscharge von 1488 Halbleitern in vier gleiche grosse Gruppen auf. Während die ersten 372 Halbleiter ohne spezifische Anpassungen produziert wurden, wurde für Gruppe zwei und drei jeweils ein Herstellungsschritt optimiert. Bei den letzten 372 Halbleitern wurden dann beide Herstellungsschritte optimiert. «Die Ergebnisse des Experiments bestätigten die Vorhersage des Algorithmus: In der Kontrollgruppe, die ohne Optimierung gefertigt wurde, war die Fehlerquote viermal höher als in jener Gruppe, die nach der Empfehlung des Algorithmus produziert wurde», sagt ETH-Professor Netland.
Hitachi Energy setzte die Empfehlungen der ETH-Forschenden anschliessend bei einer anderen Produktvariante um und senkte den Anteil fehlerhafter Produkte um über die Hälfte. Für den Halbleiterproduzenten aus Lenzburg ist der Algorithmus der ETH-Forschenden damit ein wichtiger Vorteil, der das Qualitätsmanagement entscheidend und nachhaltig verbessert.
Auch für andere Branchen relevant
Doch lassen sich diese Ergebnisse auch in anderen Industriezweigen erreichen? «Damit unsere Methode gute Ergebnisse erzielen kann, sind sehr viele Daten zur Herstellung notwendig und dies erfordert hochgradig digitalisierte Produktionsprozesse», erklärt ETH-Forscher Senoner. Aktuell, so die Autoren, seien diese Bedingungen vor allem in der Pharmaindustrie, der Chemiebranche oder in der Kunststoffherstellung gegeben.
Mit der zunehmenden Digitalisierung von Produktionsprozessen sollte der Algorithmus der ETH-Forschenden aber mittelfristig auch für andere Branchen interessant werden. Um das wirtschaftliche Potential von künstlicher Intelligenz im Qualitätsmanagement zu nutzen und die Technologie möglichst breit zugänglich zu machen, gründete Erstautor Julian Senoner gemeinsam mit ETH Pioneer Fellow Bernhard Kratzwald daher das ETH Spin-off EthonAI.
Dieser Artikel ist zuerst auf ETH-News erschienen.
Autor(in)
Christoph
Elhardt, ETH-News
Kommentare
Es sind keine Kommentare vorhanden.