News 25.01.2018, 08:55 Uhr

Algorithmus lässt Drohnen «sehen»

Der von der Universität Zürich entwickelte Algorithmus DroNet ermöglicht Drohnen, völlig selbstständig entlang der Strassen einer Stadt und in Gebäuden zu fliegen.
Für die Navigation nutzen kommerzielle Drohnen GPS, was in grosser Höhe gut funktioniert. Doch was passiert, wenn die Drohnen selbstständig zwischen Gebäuden oder im dichten Strassennetz fliegen müssen, wo Radfahrer und Fussgänger plötzlich ihren Weg kreuzen können? Bisher waren kommerzielle Drohnen nicht in der Lage, schnell auf solche unvorhergesehenen Ereignisse zu reagieren.

Navigation und Kollisionswahrscheinlichkeit

Forschende der Universität Zürich und des nationalen Forschungskompetenzzentrums NCCR Robotics haben nun den Algorithmus DroNet entwickelt, der Drohnen sicher durch die Strassen einer Stadt lenken kann. Dieser wurde als schnelles Residualnetzwerk mit acht Ebenen aufgebaut und erzeugt für jedes Eingangsbild zwei Outputs: einen für die Navigation, um Hindernisse zu umfliegen, und einen für die Kollisionswahrscheinlichkeit, um gefährliche Situationen zu erkennen und darauf reagieren zu können.
«DroNet erkennt statische sowie dynamische Hindernisse und reduziert das Tempo, um Zusammenstösse zu vermeiden. Mit diesem Algorithmus sind wir dem Ziel einen Schritt nähergekommen, selbstständig navigierende Drohnen in unseren Alltag zu integrieren», erklärt Davide Scaramuzza, Professor für Robotik und Wahrnehmung der Universität Zürich.
Nächste Seite: Smartphone-Kamera und Algorithmus statt Sensoren

Smartphone-Kamera und Algorithmus statt Sensoren

Smartphone-Kamera und Algorithmus statt Sensoren

Anstatt sich auf komplizierte Sensoren zu verlassen, nutzt die Drohne der Schweizer Forscher eine normale Kamera wie die eines Smartphones und einen sehr leistungsstarken Algorithmus für künstliche Intelligenz, um die beobachteten Situationen auszuwerten. Dieser Algorithmus besteht aus einem sogenannten «Deep Neural Network». «Dieser Computeralgorithmus lernt, komplexe Aufgaben anhand von zahlreichen Trainingsbeispielen zu lösen. Er zeigt der Drohne, wie sie bestimmte Aufgaben und schwierige Situationen löst. Das ist ähnlich wie bei Kindern, die von ihren Eltern oder Lehrern lernen», erklärt Scaramuzza.

Autos und Fahrräder sind die Lehrer der Drohnen

Eine der grössten Herausforderungen des «Deep Learning» ist es, mehrere tausend solcher Trainingsbeispiele zu sammeln. Um ausreichend Daten zu erfassen, hat Scaramuzza Fahrten von Autos und Fahrrädern gesammelt, die in städtische Umgebungen navigierten und die Verkehrsregeln respektierten. Durch Imitieren hat die Drohne automatisch gelernt, diese Regeln einzuhalten, wie zum Beispiel «Wie folge ich der Strasse, ohne in den Gegenverkehr zu geraten» oder «Wie halte ich an, wenn Hindernisse wie Fussgänger, Baustellen oder andere Fahrzeuge meinen Weg blockieren». Die Forscher konnten zudem zeigen, dass ihre Drohne nicht nur durch Strassen navigieren konnte, sondern sich auch in komplett anderen Umgebungen zurechtfand, für die sie nie trainiert wurde – so etwa in Gebäuden wie Parkhäusern oder Bürofluren.

In Richtung vollautonomer Drohnen

Die Studie zeigt ein Potenzial von Drohneneinsätzen für Überwachungsaufgaben oder Paketlieferungen in belebter Umgebung sowie für Rettungseinsätze bei städtischen Katastrophen auf. Das Forschungsteam warnt jedoch vor übertriebenen Erwartungen, was leichte, günstige Drohnen können. «Es müssen noch viele technologische Probleme gelöst werden, bevor die ehrgeizigsten Anwendungen Realität werden können», erklärt Doktorand Antonio Loquercio.

Bildergalerie
Gewinner der Kategorie Natur 2. Preis: Infinite Road to Transylvania von Calin Stan




Kommentare
Es sind keine Kommentare vorhanden.